233 research outputs found

    Law without law or "just" limit theorems?

    Full text link
    About 35 years ago Wheeler introduced the motto `law without law' to highlight the possibility that (at least a part of) Physics may be understood only following {\em regularity principles} and few relevant facts, rather than relying on a treatment in terms of fundamental theories. Such a proposal can be seen as part of a more general attempt (including the maximum entropy approach) summarized by the slogan `it from bit', which privileges the information as the basic ingredient. Apparently it seems that it is possible to obtain, without the use of physical laws, some important results in an easy way, for instance, the probability distribution of the canonical ensemble. In this paper we will present a general discussion on those ideas of Wheeler's that originated the motto `law without law'. In particular we will show how the claimed simplicity is only apparent and it is rather easy to produce wrong results. We will show that it is possible to obtain some of the results treated by Wheeler in the realm of the statistical mechanics, using precise assumptions and nontrivial results of probability theory, mainly concerning ergodicity and limit theorems.Comment: 9 pages, 3 figure

    Compressibility, laws of nature, initial conditions and complexity

    Get PDF
    We critically analyse the point of view for which laws of nature are just a mean to compress data. Discussing some basic notions of dynamical systems and information theory, we show that the idea that the analysis of large amount of data by means of an algorithm of compression is equivalent to the knowledge one can have from scientific laws, is rather naive. In particular we discuss the subtle conceptual topic of the initial conditions of phenomena which are generally incompressible. Starting from this point, we argue that laws of nature represent more than a pure compression of data, and that the availability of large amount of data, in general, is not particularly useful to understand the behaviour of complex phenomena.Comment: 19 Pages, No figures, published on Foundation of Physic

    Efficiency of a stirred chemical reaction in a closed vessel

    Full text link
    We perform a numerical study of the reaction efficiency in a closed vessel. Starting with a little spot of product, we compute the time needed to complete the reaction in the container following an advection-reaction-diffusion process. Inside the vessel it is present a cellular velocity field that transports the reactants. If the size of the container is not very large compared with the typical length of the velocity field one has a plateau of the reaction time as a function of the strength of the velocity field, UU. This plateau appears both in the stationary and in the time-dependent flow. A comparison of the results for the finite system with the infinite case (for which the front speed, vfv_f, gives a simple estimate of the reacting time) shows the dramatic effect of the finite size.Comment: 4 pages, 4 figure

    About the role of chaos and coarse graining in Statistical Mechanics

    Full text link
    We discuss the role of ergodicity and chaos for the validity of statistical laws. In particular we explore the basic aspects of chaotic systems (with emphasis on the finite-resolution) on systems composed of a huge number of particles.Comment: Summer school `Fundamental Problems in Statistical Physics' (Leuven, Belgium), June 16-29, 2013. To be published in Physica

    Linear and anomalous front propagation in system with non Gaussian diffusion: the importance of tails

    Full text link
    We investigate front propagation in systems with diffusive and sub-diffusive behavior. The scaling behavior of moments of the diffusive problem, both in the standard and in the anomalous cases, is not enough to determine the features of the reactive front. In fact, the shape of the bulk of the probability distribution of the transport process, which determines the diffusive properties, is important just for pre-asymptotic behavior of front propagation, while the precise shape of the tails of the probability distribution determines asymptotic behavior of front propagation.Comment: 7 pages, 3 figure

    Linear and non-linear thermodynamics of a kinetic heat engine with fast transformations

    Full text link
    We investigate a kinetic heat engine model constituted by particles enclosed in a box where one side acts as a thermostat and the opposite side is a piston exerting a given pressure. Pressure and temperature are varied in a cyclical protocol of period τ\tau : their relative excursions, δ\delta and ϵ\epsilon respectively, constitute the thermodynamic forces dragging the system out-of-equilibrium. The analysis of the entropy production of the system allows to define the conjugated fluxes, which are proportional to the extracted work and the consumed heat. In the limit of small δ\delta and ϵ\epsilon the fluxes are linear in the forces through a τ\tau-dependent Onsager matrix whose off-diagonal elements satisfy a reciprocal relation. The dynamics of the piston can be approximated, through a coarse-graining procedure, by a Klein-Kramers equation which - in the linear regime - yields analytic expressions for the Onsager coefficients and the entropy production. A study of the efficiency at maximum power shows that the Curzon-Ahlborn formula is always an upper limit which is approached at increasing values of the thermodynamic forces, i.e. outside of the linear regime. In all our analysis the adiabatic limit τ→∞\tau \to \infty and the the small force limit δ,ϵ→0\delta,\epsilon \to 0 are not directly related.Comment: 10 pages, 9 figure

    Front Propagation in Chaotic and Noisy Reaction-Diffusion Systems: a Discrete-Time Map Approach

    Full text link
    We study the front propagation in Reaction-Diffusion systems whose reaction dynamics exhibits an unstable fixed point and chaotic or noisy behaviour. We have examined the influence of chaos and noise on the front propagation speed and on the wandering of the front around its average position. Assuming that the reaction term acts periodically in an impulsive way, the dynamical evolution of the system can be written as the convolution between a spatial propagator and a discrete-time map acting locally. This approach allows us to perform accurate numerical analysis. They reveal that in the pulled regime the front speed is basically determined by the shape of the map around the unstable fixed point, while its chaotic or noisy features play a marginal role. In contrast, in the pushed regime the presence of chaos or noise is more relevant. In particular the front speed decreases when the degree of chaoticity is increased, but it is not straightforward to derive a direct connection between the chaotic properties (e.g. the Lyapunov exponent) and the behaviour of the front. As for the fluctuations of the front position, we observe for the noisy maps that the associated mean square displacement grows in time as t1/2t^{1/2} in the pushed case and as t1/4t^{1/4} in the pulled one, in agreement with recent findings obtained for continuous models with multiplicative noise. Moreover we show that the same quantity saturates when a chaotic deterministic dynamics is considered for both pushed and pulled regimes.Comment: 11 pages, 11 figure

    Statistical mechanics of systems with long-range interactions and negative absolute temperature

    Full text link
    A Hamiltonian model living in a bounded phase space and with long-range interactions is studied. It is shown, by analytical computations, that there exists an energy interval in which the microcanonical entropy is a decreasing convex function of the total energy, meaning that ensemble equivalence is violated in a negative-temperature regime. The equilibrium properties of the model are then investigated by molecular dynamics simulations: first, the caloric curve is reconstructed for the microcanonical ensemble and compared to the analytical prediction, and a generalized Maxwell-Boltzmann distribution for the momenta is observed; then, the nonequivalence between the microcanonical and canonical descriptions is explicitly shown. Moreover, the validity of Fluctuation-Dissipation Theorem is verified through a numerical study, also at negative temperature and in the region where the two ensembles are nonequivalent

    Langevin equations from experimental data: the case of rotational diffusion in granular media

    Full text link
    A model has two main aims: predicting the behavior of a physical system and understanding its nature, that is how it works, at some desired level of abstraction. A promising recent approach to model building consists in deriving a Langevin-type stochastic equation from a time series of empirical data. Even if the protocol is based upon the introduction of drift and diffusion terms in stochastic differential equations, its implementation involves subtle conceptual problems and, most importantly, requires some prior theoretical knowledge about the system. Here we apply this approach to the data obtained in a rotational granular diffusion experiment, showing the power of this method and the theoretical issues behind its limits. A crucial point emerged in the dense liquid regime, where the data reveal a complex multiscale scenario with at least one fast and one slow variable. Identifying the latter is a major problem within the Langevin derivation procedure and led us to introduce innovative ideas for its solution
    • …
    corecore